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Abstract
This paper presents the results of the human-robot interac-

tion (HRI) study with German native speakers addressing the
robot in their L1 and in L2 English. The aim of the experi-
ment is to test the strategies of providing clarifications when
talking to the voice assistant in a task involving teaching com-
plex vocabulary. The analyses is based on spectral (F1, F2, and
mean F0) and temporal (vowel length) features excerpted from
the target words. With reference to a theoretical framework of
hyperarticulation and hypoarticulation, these acoustic measures
were compared across the iterations of the target words (first vs.
second iteration). Results showed that participants, when asked
for clarification by an inanimate interlocutor, do not hyperar-
ticulate, but try to preserve the surface representation of target
words across the iterations. These findings suggest that acoustic
characteristics of clarifications directed to voice assistants differ
from the ones directed to human interlocutors.
Index Terms: Human-robot interaction, multilingual commu-
nication, clarifications, English, German

1. Introduction
Recent advances in ASR (Automatic Speech Recognition)
made robot-directed speech a common mode of everyday in-
teraction. Contemporary dialogues that involve voice assistants
trained on large speech data permit the use of complex vocabu-
lary and do not limit the interaction to issuing simple requests.
Furthermore, several commercial voice assistants already allow
for multilingual interaction and exhibit high word recognition
scores for several languages [1, 2]. Increasing communicative
skills of voice assistants can make overhearers think that robots
possess human-like cognitive capabilities [3, 4, 5]. Regardless
of attributing high linguistic competence to inanimate talking
agents, several studies showed that robot-directed speech acous-
tically differs from utterances exchanged between human inter-
locutors hence serves as a good field for testing the enhance-
ment and convergence strategies in HRI [6, 7, 8, 9].

In this study, we investigate speech enhancement patterns
applied by German native speakers confronted with clarifica-
tion requests given by a talking agent in two languages. Even
though the term speech enhancement is often associated with
techniques of noise reduction and speech signal amplification
[10], throughout this paper, we use it in the specific sense of re-
ferring to the strategies of increasing the speech intelligibility in
robot-directed speech. The underlying assumption, this exper-
iment is based upon, relates to a natural tendency of adjusting
speech style driven by presupposed communicative competence
of an interlocutor. In line with Lindbloom’s model of hypoartic-
ulation and hyperarticulation [11], we assume that speakers ac-
commodate selected speech features and hyperarticulate when

the voice assistant poses a clarification request [12, 13, 14].
Such adaptation strategy can shift the acoustic parameters of
speech in the following relation: the lower the presupposed or
actual linguistic competence (or hearing thresholds) of an ad-
dressee, the greater the speech enhancement [15, 16]. Previ-
ous studies showed that such enhancement strategies entail in-
creased intensity [17], greater F0 range [6, 18], increased for-
mant frequencies [19], increased vowel durations [20], and a
larger vowel space [21]. These alternations are often referred
to as clear speech and constitute the features of hyperarticula-
tion. By referring to previous studies into speech characteristics
in HRI, in this paper, we focus on local intelligibility adjust-
ments given by human speakers when encountered the clarifi-
cation requests and address the following questions. Are clar-
ification requests causing hyperarticulation in HRI? And if so,
are the speech enhancement strategies consistent across spoken
languages, i.e., participants’ native language and their second
language? By answering the questions above we wish to better
understand the acoustic features of clarifications.

We hypothesize that the acoustics characteristics of speech
(measured in F1 and F2 values extracted from the stressed vow-
els, duration of the stressed vowels and mean F0 of the target
words) differ across iterations of target words (first production
compared with the one given after a clarification request), and
across spoken languages (participants’ L1: German vs. L2:
English). To test this hypothesis, we use a within-subject ex-
perimental design, conceptualized as a task of teaching a voice
assistant complex vocabulary in two languages. With the appli-
cation of a new lexis teaching paradigm, we expect to control
for the effects of routinized interactions [22] in addressing the
talking agents. The elicitation of the effect of low speech com-
prehension threshold [23] was achieved by projecting a clarifi-
cation request (with a clear F0 rise) after the first instances of
selected target words.

2. Method
The experiment included scripted interaction with the talking
agent. Participants were instructed to teach the voice assistant
some complex vocabulary in two languages. Their pseudo-task
was to paraphrase the target word definitions and explain the
new lexemes in their own words.

2.1. Experimental procedure

Participants were given the task to teach the robot cognate
words in their L1 (German) and L2 (English). They were first
presented with a target word accompanied by its concise defi-
nition. At this stage, the participants were given an option to
listen to a model production of a target word to avoid potential
difficulties with recalling its pronunciation in both languages.
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Abakus: Rechenschieber.

Participant reads a definition.

Abakus:  ...

Participant teaches the robot a new target word.
First iteration.

?

Clarification request. 
Robot repeats the target word.

Abakus:  ...

Second iteration.

Danke für die Erklärung.

Next trial.

Der Roboter scheint Sie noch nicht 
richtig verstanden zu haben.

Figure 1: Schematic interaction between the robot and the par-
ticipants in a German trial.

The model pronunciation was followed by a short (0.5 second)
pure tone (440 Hz) distraction sound to prevent the participants
from mimicking the model pronunciation. Then, the partici-
pants were instructed to pronounce the target word clearly to let
the robot memorize a new lexical item. On the following screen,
participants were given the pseudo-task to explain the meaning
of the target word in their own words. Then, they were asked to
clarify the target and repeat it to ensure that the robot recorded a
clear phonetic representation of the newly learned target word.

The elicitation of the clarifications was achieved by project-
ing the modified target words in a robotic speech mode with a
rising intonation contour. One-third of the words were under-
stood correctly by the robot, i.e., the clarification request was
omitted for these items. Such recordings were treated as fillers
and were excluded from the analyses (11 of 34 target words).
The projection of the stimuli was randomized by the language
of instruction, that is, subjects were switching between lan-
guages instead of teaching the robot the target words in lan-
guage blocks. The participants were asked to use a headset
to ensure the best possible audio quality. Before the experi-
mental session, participants were able to test the microphone
input by recording a short sample and to adjust the recording
settings prior to uploading, if necessary. The experiment must
have been completed in one uninterrupted session, but partici-
pants could revoke their participation any time due to recording-
related stress or fatigue. The debriefing stage followed the ses-
sion to explain the real aims of the experiment. Recordings
were saved and uploaded in an uncompressed format with 48
kHz sampling rate and 16-bit depth. The experiment was de-
ployed in LabVanced online platform [24]. The entire session
lasted around 30 minutes, depending on how elaborate the ex-
planations of the target words were. The procedure has been
approved by the Ethics Committee of the University of Trier
(reference no. EK 77/2022).

2.2. Participants

We recorded 50 German native speakers (25 males and 25 fe-
males) aged 20 to 72 (mean = 32 years). The subjects were
recruited via the outsourcing platform Prolific and paid for their
participation. The L2 proficiency of participants (B2-C1) was
self-estimated on the basis of a questionnaire which included
questions about level of education, foreign language skills (in
CEFR: A1-C2 scale), years spent abroad in an English-speaking
country, multilingualism, language of everyday communica-
tion, as well as diagnosed speech and hearing disorders poten-
tially disqualifying from the participation in the experiment.

2.3. Target words and clarification requests

The target words were German-English cognates to control for
the phonological surrounding of the stressed vowels. To ac-
count for the influence of the neighbouring sounds, vowels were
flanked by equal consonants in the target words in both lan-
guages. The target words were recorded in acoustically con-
trolled surroundings (sound attenuated booth) and modified to
mimic the robotic sound. The effect of robotic speech was
achieved by spectral and temporal manipulation of the recorded
samples. The procedure involved multiplication of the recorded
signal into four mono tracks. Then the tracks were phased out
the by 0.015 s. In addition, two tracks were shifted by +3 and -3
semitones to achieve a robotic sound. The tempo was lowered
by 1/10 in comparison to the source samples.

Table 1: English-German cognate target words. Asterisk marks
the words with no clarification request.

English German English German

Abacus Abakus *Guilty *Gültig
*Abductor *Abduktor Hand Hand
*August *August Illusion Illusion

*Autograph *Autogramm Jungle Dschungel
*Bald *Bald *Mark *Marke
Ball Ball Mental Mental

Calamine Kalamin Metal Metall
Caution Kaution Normal Normal

*Conception *Konzeption Parallel Parallel
Dependence Dependenz *Personal *Personal
Depression Depression Probe Probe

Dessert Dessert Prosody Prosodie
Direction Direktion Sand Sand
Elegant Elegant *See *See

*Engaged *Engagiert Summer Sommer
*Familiar *Familiär Tolerant Tolerant

Finger Finger Zebra Zebra

2.4. Acoustic analyses

Recordings were annotated and checked by trained phoneti-
cians. Segment boundaries (stressed vowel and target word)
were manually set following standard segmentation criteria
[25]. The vowel duration, F1, F2 frequencies and mean F0 val-
ues on the target word level were automatically excerpted in
Praat [26]. The format frequencies were measured at temporal
midpoints of the stressed vowels.

In total, recording session of 9 participants (18% of all data)
were discarded from the analyzed data due to technical diffi-
culties, unintelligible speech or high level of background noise
captured on the samples. The proportion of excluded data is rel-
atively high also because some participants have changed their
strategies of clarification and instead of another production of
the target word, they provided the robot with a target synonym
or hyperonym. Furthermore, several recordings were excluded
from the analyzed set because participants instead of providing
the second iteration of the target word simplified its definition.

2.5. Statistical analyses

The statistical analyses was done in R (version 4.1.1) [27] us-
ing the lme4 package (version 1.1.27.1) [28]. To estimate the
effects of the explanatory variables (language and iteration) on
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the specified acoustic measures, four linear mixed regression
models (one for each dependent variable: F1, F2, mean F0, and
vowel duration) were fitted in the form of a factorial 2 x 2 design
using Restricted Maximum Likelihood (REML) and Bound-
ary Optimizer Based on Quadratic Approximation (BOBYQA).
The participant and target word were included as separate ran-
dom effects (intercept adjustment). The theoretical assumption
for the current test can be represented as:

Yijk ∼ N(µij , δ
2) (1)

where Yijk stands for the dependent variable for participant j,
target word i and iteration k; µij represents the value of the
dependent variable for participant j and target word i for all
iterations; and δ2 is the variance component (parameter of the
random effects model) that describes the variability within the
iteration parameter. On the basis of this assumption, the regres-
sion model was computed according to the following equation:

µij = β0 + β1 · languageij + β2 · iterationij

+β3 · languageij × iterationij + uij + ũ+ ϵijk
(2)

where µij stands for the value of dependent variable total for
participant j and target word i for all iteration categories; β0

represents the parameter of the fixed effects model, which is the
true average value of the dependent variable ijk for all partici-
pants, the target word, and iteration, assuming the value of the
reference levels for categorical variables; β1−3 stand for model
coefficients representing effect sizes, provided that the values
of the other variables of the model are controlled; uij indicates
how far the actual values of the dependent variable participant j
for the target word i differ from the average dependent variable
for all target words i; ũi indicates how far the average depen-
dent variable deviates for all observations for all target words
from the average value of the dependent variable in all target
words, participants and repetitions; and ϵijk determines how
far the actual values of the dependent variable ijk deviate from
the average for participant j and target word i.

In the first step, an unconditional null model (without pre-
dictors) was computed. Then, the language and iteration pre-
dictors were added. A significant ANOVA result examining the
difference in variances between the models without and with
a variable permitted the inclusion of the variables in the final
model. Similarly, the next step tested the inclusion of inter-
actions between the language and iteration predictors in the
model. Collinearity parameters were estimated via variance in-
flation factors (VIF). The interpretation of the VIF values along
with linearity of fitted models, homogeneity of variance, and
normality of random effects was based on the recommenda-
tions by [29]. The analyzed sample consisted of 3741 observa-
tions (see supplementary material), measured on the pool of 41
participants (unique categories) across 23 target words in each
tested language.

3. Results
The descriptive statistics for the numerical variables in tested
models showed a small to moderate skewness (< 2.0) and
kurtosis (< 8.0). The intercept-only model was significant:
Int = .13, 95%CI(.12, .15), t(3737) = 15.40, p < .001
(for vowel duration). Adding the predictors to the model re-
sulted in significant decrease of AIC (Akaike Information Cri-
terion) [30] and BIC (Bayesian Information Criterion) [31] and

the log-likelihoods which provided the justification of the se-
lected model (χ2(2) = 116.91, p < .001). However, ac-
counting for interactions between predictors did not result in
significant changes in deviance, (χ2(2) = 2.16, p = .152),
therefore, only main effects were considered in the final model
(henceforth: mod1). The model’s total explanatory power was
substantial (R2 conditional = .49, fixed effects R2 marginal
= .02). The temporal differences across the iterations and lan-
guages are plotted on Figure 2 and the results of the fitted re-
gression model are shown in Table 2. Across all target words
the differences between stressed vowels were in the range of .13
s. The overall effect regarded the marginal increase of vowel
duration in second iteration consistently across languages (see
Figure 2).
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Figure 2: Marginal means for vowel durations [s] across itera-
tions and languages in the final model: mod1

The null models accounting for spectral measures of for-
mant frequencies moderated by target word and itera-
tion factors were significant. The model testing the F1
scored: Int = 603.41, 95%CI(550.92, 655.90), t(3737) =
22.54, p < .001; whereas the model testing the F2 scored:
Int = 1559.01, 95%CI(1417.58, 1700.43), t(3737) =
21.61, p < .001). Adding the predictors to the models re-
sulted in an non-significant reduction in AIC, BIC, and log-
likelihoods for first format values (χ2(2) = 1.08, p = .583).
Adding the predictors to model accounting for second formant
values resulted in significant decrease of the AIC, BIC, and
log-likelihoods (χ2(2) = 8.77, p = .012), which proved that
the model fitted the data well. The model’s total explana-
tory power was substantial (R2 conditional = .45, fixed ef-
fects R2 marginal = .01). However, accounting for interactions
between predictors did not result in significant changes in de-
viance (χ2(1) = .01, p = .907), therefore, only main effects
were considered in the final model. No interaction effect was
observed on the basis of the analyzed data.

The null model testing the mean f0 values on the target
word level was significant and fitted the data well: Int =
168.10, 95%CI(154.26, 181.94), t(3737) = 23.81, p <
.001). Again, the addition of predictors did not significantly
reduce the AIC, BIC, and log-likelihoods (χ2(2) = .33, p =
.845). Similarly, the interactions did not reach the level of sta-
tistical significance (χ2(3) = 2.26, p = .521) and no signifi-
cant differences were found between the tested categories.

Taken together, on the basis of the analyzed spectral and
temporal features, no hyperarticulation effects were present in
the second iteration of the target words.

4785



Table 2: Estimated marginal means (EMM) for the temporal predictors in a linear model mod1 and contrasts between the predictors

Language Iteration EMM SE 95% CI Language / Iteration Contrast SE z.ratio p

German 1 .142 .009 .124− .159 German 1 - English 1 .002 10.85 < .001
English 1 .125 .009 .108− .142 Ger/Eng 1 - Ger/Eng 2 .002 −1.01 .744
German 2 .143 .009 .126− .160 German 1 - English 2 .002 6.95 < .001
English 2 .126 .009 .109− .143 German 2 - English 1 −.002 −8.39 < .001

4. Discussion
Overall, we rejected our assumptions that robot-initiated clari-
fication requests cause hyperarticulation and elicit clear speech.
Our outcomes resonate with the findings by [32] and partly refer
to [22]. On the basis of the gathered data, we rejected the hy-
pothesis regarding the local intelligibility adjustments in HRI.
The spectral measures (first and second format frequencies of
stressed vowels and mean fundamental frequency) were not sig-
nificantly different in the tested conditions. In line with find-
ings reported by [32], we did not observe the exaggeration in
the second iteration of the target word. Even though the spec-
tral measures did not support our hypothesis, due to lack of the
expansion of F1, F2 on the temporal mid-point of the vowels,
and mean F0 on a word level - we managed to partly replicate
the results by [33] that suggest segmental lengthening observed
in computer-directed speech. We find a tendency for increased
vowel duration upon clarification request issued by the robot.

However, this finding should be interpreted with caution,
not only due to the reported statistical power, but also be-
cause lengthening fluctuation does not exclusively correspond
to speech rate changes. The temporal measure of the stable seg-
ments of spectrum is a function of speech rate, lexical stress
placement, idiosyncratic characteristics of speaker, and phono-
logical surrounding of syllable nuclei. The effect of less promi-
nent phonetic encoding present in routinized commands di-
rected to talking agents also impacts the length of stressed con-
tinuants. Against our expectations, the spectral characteristics
of the signal, measured in temporal mid point of the stressed
vowels did not show significant differences across repetitions
(in none of the languages). We only observed the marginal dif-
ferences in temporal characteristics of the stressed vowels. Rel-
atively small alternations of vowel length across iterations sug-
gest that clarification requests initiated by the voice assistant
cause only small-scale changes in the temporal domain.

5. Conclusions
This study examined the local adjustments of speech intelligi-
bility in human-robot interaction. Our methodological approach
involved clarifications elicited by a request issued by the talking
agent in English and German. By referring to human-human
interaction, and in line with hyperarticulation and hypoartic-
ulation model [11], we assumed that clarification requests in
HRI evoke hyperarticulation (defined on spectral and temporal
plane) similarly to interaction between animate speakers. How-
ever, the gathered data did not confirm our initial hypotheses.

Possible explanations of speech lacking the hyperarticula-
tion in the second iteration of the clarified tokens can touch
upon the nature of interaction in which participants are aware
that the robot has recorded the first instance of a target word,
hence, when asked for a repetition, most similar pronunciation
of the targets is desired. It seems that participants in order
to clarify the misheard target words try to preserve the qual-

ity of the first iteration while showing a tendency to lower the
speech rate only. In contrast to human-human interaction, par-
ticipants may assume that talking agents will benefit from iden-
tical sound quality between the iterations and the enhancement
strategy relies on changes of speech tempo. Therefore, selective
application of clear speech features in HRI seems to differ from
the enhancement patterns typical to human-human interaction.
Participants may assume that similar surface representations of
the words may facilitate the process of teaching the voice agent
complex vocabulary. If the voice assistant tries to map the prop-
erties of both provided iterations of the target words, the degree
of phonetic resemblance across the repetitions should be high.
The only dimension which may help the robot comprehend the
target word is the speech rate. Changing the phonetic encoding
between the target words may result in further misunderstand-
ings and evoke more clarification requests. Alternatively, natu-
ral and frequent interactions with voice assistants could have
made robot-directed speech a distinctive mode of interaction
that should no longer be studied in comparison with human-
human interaction models. The hyper- and hypo-articulation
theory should be fine-tuned with respect to animacy of an inter-
locutor. Such a supplement of the well-established theory finds
its justification in a growing field of studies into HRI. In the
future, studies need to show if HRI can be treated as a distinc-
tive interaction scheme, possibly diverging from typical human-
human interaction, even though many contemporary voice as-
sistants are designed to imitate natural human-like interplay.

This study would certainly benefit from extending the set of
target words and including other language pairs. The limitations
of this approach also relate to quite monotonous experimental
design, in which participants are exposed to numerous clarifi-
cation requests. The randomization of the number of the clar-
ification requests per token would also prevent the participants
from habituating the pattern of the second iteration being under-
stood by the talking agent. The experience in interacting with
various ASR systems can also influence the speech enhance-
ment strategies. Users more accustomed to talking agents may
exhibit different clarification patterns than speakers rarely ad-
dressing the voice assistants. To fully understand the strategies
of providing clarifications in HRI, some other characteristics of
hyper- and hypo-articulation should be included, such as VOT,
formant dynamics, or voice quality measures. A conversational
study design would further help us to focus on suprasegmen-
tal features of phrases exceeding the level of the target words.
Other possible extension of the study objectives could shift the
focus to lexical analyses to test the semantic relations between
the definitions of target words provided in human-human inter-
action compared with HRI.

6. Data availability
The supplementary material, experimental data, and code are
publicly available in the following Open Science Framework
(https://osf.io/qwyzv/) repository.
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